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Adverse Selection: Discrete Types
I There are many types, θ 2 fθ1, ..., θng which are ordered such
that θi > θi�1 for all i > 2.

I Let πi = Prfθ = θig, and assume that all types have the
same reservation utility normalized to 0.

I Let direct mechanism x(θi ) , xi , t(θi ) , ti . Why do we just
use direct mechanisms?

I Then, the principal�s problem is:

max
f(ti ,xi )gni=1

n

∑
i=1

πi (ti � c(xi ))

s.t.v(xi , θi )� ti � 0, 8i (IR)
v(xi , θi )� ti � v(xj , θi )� tj , 8i 6= j (IC ),

which is the straightforward extension of the two type case.
I This is, however, a complicated problem, especially as n grows
large: There are a total of n (IR) constraints and another
n(n� 1) (IC) constraints.
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Adverse Selection: Discrete Types

I Proposition 3.1: (Maskin-Riley) The principal�s problem
reduces to:

max
f(ti ,xi )gni=1

n

∑
i=1

πi (ti � c(xi ))

s.t.v(x1, θ1)� t1 � 0 (IR1)

v(xi , θi )� ti � v(xi�1, θi )� ti�1, 8i = 2, � � � , n (DIC ),
xi � xi�1, 8i = 2, � � � , n (MON)

I That is, there is one (IR) constraint, (n� 1) �Downward�(IC)
constraints, and another (n� 1) �Monotonicity� constraints.
These features are features of the solution, that must hold for
any solution under the assumptions that we usually make.
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Adverse Selection: Continuum Types (Mirrlees)

I Now let the type space Θ = [θ, θ], with the cumulative
distribution function F (θ), and with a strictly positive density
f (θ) = F 0(θ).

I Then, the principal�s problem is:

max(t,x)
R θ

θ (t(θ)� c(x(θ)))f (θ)dθ

s.t.v(x(θ), θ)� t(θ) � v(0, θ), 8θ 2 Θ, (IR)
v(x(θ), θ)� t(θ) � v(x(θ0), θ)� t(θ0), 8θ, θ0 2 Θ (IC )

I Proposition Suppose IC mechanism (x, t) is di¤erentiable.
(x, t) is incentive compatible if and only if
(M) x0(θ) � 0, 8θ.
(ICFOC) vx (x(θ), θ)x0(θ)� t0(θ) = 0, 8θ,

I Given SCP of v , at a solution (t, x), IRθ is binding, i.e.
v(x(θ), θ)� t(θ) = v(0, θ).
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Adverse Selection: Continuum Types

I From the analysis above we can rewrite the principal�s
problem as

maxx,t is di¤erentiable
R θ

θ (t(θ)� c(x(θ)))f (θ)dθ

s.t.x0(�) � 0 (M)
vx (x(θ), θ)x0(θ)� t0(θ) = 0, 8θ (ICFOC )
v(x(θ), θ)� t(θ) = v(0, θ), (IR)

I To solve this program in general requires optimal control
theory, but this can sometimes be avoided by the following
Shortcut: We solve the relaxed program obtained by ignoring
the monotonicity constraint (M). If it turns out that the
resulting solution satis�es (M), then we are done.
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Adverse Selection: Continuum Types
I De�ne the Agent�s equilibrium utility as
U(θ) � v(x(θ), θ)� t(θ), which depends on θ in two ways �
through the agent�s true type and through his truthful
announcement.

I To solve the relaxed problem, ICFOC can equivalently be
written as

U(θ) = U(θ) +
Z θ

θ
vθ(x(s), s)ds

and the binding (IR) means

U(θ) = v(0, θ),

thus (ICFOC) and (IR) together are equivalent to

U(θ) = v(0, θ) +
Z θ

θ
vθ(x(s), s)ds.
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I This implies that we can substitute transfers
t(θ) = v(x(θ), θ)� U(θ) into the Principal�s objective
function.

I Eliminating the constant term v(0, θ), the objective function
takes the familiar form as the expected di¤erence between
total surplus and the Agent�s information rent (extra cost
caused by hidden information):

max
x

Z θ

θ
[v(x(θ), θ)� c(x(θ))]f (θ)dθ�

Z θ

θ

Z θ

θ
vθ(x(s), s)dsf (θ)dθ.

I We can rewrite the expected information rents using
integration by parts:Z θ

θ

Z θ

θ
vθ(x(s), s)dsf (θ)dθ

=
Z θ

θ
vθ(x(s), s)dsF (θ)jθθ �

Z θ

θ

Z θ

θ
vθ(x(θ), θ)F (θ)dθ

=
Z θ

θ
vθ(x(θ), θ)

1� F (θ)
f (θ)

f (θ)dθ

I f (θ)
1�F (θ) is called hazard rate of type θ.
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I With the expected information rents given above, we can
rewrite the principal�s problem as:

max
x

Z θ

θ
[v(x(θ), θ)� c(x(θ))� vθ(x(θ), θ)

1� F (θ)
f (θ)

]f (θ)dθ.

I Thus, P will maximize the expected value of the expression
within square brackets, which is called the virtual surplus.
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Adverse Selection: Continuum Types

I Any pointwise maximizer,

x�(θ) 2 argmax
x

Z θ

θ
[v(x , θ)� c(x)� vθ(x , θ)

1� F (θ)
f (θ)

]f (θ)dθ,

will also maximize the expected virtual surplus. such x� can
be the candidate of the relaxed problem.

I Proposition If v has SCP (vxθ > 0), vxθθ � 0, and
d ( f (θ)

1�F (θ) )

d θ � 0, then x� is increasing and therefore solution to
relaxed problem satis�es (M) and solve the full problem.



Adverse Selection: Continuum Types

I Any pointwise maximizer,

x�(θ) 2 argmax
x

Z θ

θ
[v(x , θ)� c(x)� vθ(x , θ)

1� F (θ)
f (θ)

]f (θ)dθ,

will also maximize the expected virtual surplus. such x� can
be the candidate of the relaxed problem.

I Proposition If v has SCP (vxθ > 0), vxθθ � 0, and
d ( f (θ)

1�F (θ) )

d θ � 0, then x� is increasing and therefore solution to
relaxed problem satis�es (M) and solve the full problem.



Applications: Regulating a (Natural) Monopolist

I This model was initially introduced by Baron-Myerson (1982).

I A natural monopolist has costs ψ(y , θ) where y is output
produced (e.g., electricity) and θ is a private cost parameter
measuring e¢ ciency: ψy > 0,ψθ < 0,ψθy < 0 (higher θ
implies more e¢ ciency and lower marginal costs). Given a
subsidy s from the government, the �rm maximizes pro�ts:

π(y , θ, s) = p(y)y � ψ(y , θ) + s.

I The government (regulator) maximizes social welfare:

B(y)� (1� λ)s + s � ψ(y , θ),

where B(y) =
R y
0 p(y)dy is the social surplus from producing

y , and λ > 0 is the �shadow cost�of distortionary taxes
(taxes are needed to collect the subsidy s). (Everything is
common knowledge except θ.)
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Applications: Regulating a (Natural) Monopolist
I The government can o¤er the �rm a mechanism or menu:
(y(θ), s(θ)) and the �rm�s pro�ts are,

u(y, s, θ) = �ψ(y(θ), θ) + s(θ)

I (That is, we can rede�ne the subsidy s to include the revenues
that the government can collect and transfer to the �rm.)
The government must assure that u(y, s, θ) � 0, which is the
IR constraint, and must also respect the IC constraints of
truthful revelation.

I We can now rede�ne the variables so as to put this problem in
the notation of our original model. That is, let

x(θ) � y(θ); t(θ) � �s(θ)
I Letting c(y(θ)) � ψ(y(θ), θ)� B(y(θ)), the government
maximizes:

max
x;t

Z θ

θ
[λt(θ)� c(x(θ))]f (θ)dθ

subject to the standard IR and IC.
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Applications: Optimal Labor Contracts
I Consider the case where the manager-owner of a �rm is risk
neutral and the employee is risk averse to the amount of labor
input. That is, assume that the worker�s utility is given by

u(`,w , θ) = w � ψ(`, θ),

and the owner�s utility is given by,

π(`,w , θ) = θ`� w ,

where θ is that marginal product of the worker, w is the wage
the worker receives, and ` is the worker�s labor input.

I `, θ are assumed to be private information of the worker, and
the employer only observes the output θ`. We can now
rede�ne the variables so as to put this problem in the notation
of our original model. That is, let

y(`, θ) � �`θ; t(θ) � �w(θ); v(x , θ) � �ψ(`, θ) = �ψ(�x
θ
, θ),

which yields the exact same problem.
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y(`, θ) � �`θ; t(θ) � �w(θ); v(x , θ) � �ψ(`, θ) = �ψ(�x
θ
, θ),

which yields the exact same problem.



Applications: Vertical Di¤erentiation-Quality

I A monopoly manufactures goods in 1-unit quantities each,
but they can di¤er in quality. Just take x to be quality of a
unit of good, and c(x) to be the cost of producing one unit at
quality x , and we are back in the model we analyzed.

I This model was analyzed by Mussa-Rosen (1978) and they
note the connection to Mirrlees�work but just apply it to this
problem. (Examples: train/plane classes, �olives� and ��gs�
restaurants in Charlestown, 486SX and 486DX computer
chips.)
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Multi-Agency Adverse Selection

I Set of Agents, N = f1, 2, ..., i , ..., ng.

I Let y 2 Y be an allocation. For example, we might have
y = (x ; t), with x = (x1, � � � , xn) and t = (t1, � � � , tn), an
where xi is agent i�s consumption choice and ti is the agent�s
payment to the principal. The choice of y is generally
controlled by the principal, although she may commit to a
particular set of rules.

I Each agent i observes a private signal which determines his
preferences over alternatives x 2 X , the signal for each
i : θi 2 Θi .

I The principal has the ex post utility function v(x , θ).
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Multi-Agency Adverse Selection

I Each agent maximizes expected utility with a vNM utility over
outcomes ui (x , θi ). (also referred to as a Bernoulli utility
function)

I Note: This is the private value case for which θi can
represent some signal of the agents �willingness to pay� for an
object. There is also the common value case in which utilities
are given by ui (x , θ), and θ consists of signals that re�ect the
true, or absolute value of an object. (e.g., oil well site)

I The vector of types, θ = (θ1, ..., θn) 2 Θ1 � ...�Θn � Θ is
drawn from a prior distribution with density p(θ) [can be
probabilities for �nite Θ]. θ is also called the state of the
world.
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Multi-Agency Adverse Selection

I Let p�i (θ�i jθi ) be i�s probability assessment over the possible
types of other agents given his type is θi . p�i (θ�i jθi ) denotes
i�s marginal probability assessment over his own types.

I Information:
(1) θi is privately observed by agent i
(2) fui (�)gi is common knowledge
(3) p (or also p�i ) is common knowledge
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Multi-Agency Adverse Selection

I Suppose that the principal has all of the bargaining power and
can commit to playing a particular game or mechanism
involving her agent(s).

I Posed as a mechanism design question, the principal will want
to choose the game (from the set of all possible games) which
has the best equilibrium (to be de�ned) for the principal.

I A communication mechanism y : ∏
i
Mi ! Y is a function

associating a joint message (i.e., strategy) space for each
agent, Mi , with an allocation y . Let
m = (m1, � � � ,mn) 2 M = (M1, � � � ,Mn). For generality, we
will suppose that Mi includes all possible mixtures over
messages; thus, mi may be a probability distribution.

I In essence, any mechanism de�nes a simultaneous-move
subgame for the agents to play (to report some messages).
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Multi-Agency Adverse Selection

The timing of the communication mechanism game is as follows:

1. The principal o¤ers a communication mechanism y(m) to the
agents.

2. The agents simultaneously decide whether or not to
participate in the mechanism. (This stage may be super�uous
in some contexts; moreover, we can always require the
principal include the message of "I do not wish to play" and
the null contract, making the acceptance stage unnecessary.)

3. Agents play the communication mechanism by sending
messages to the principal simultaneously.

Game tree: we must choose an equilibrium concept for subgame
played by the agents. We may consider BNE (or Strategy-proof
equilibria, etc.).


